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THE FlFFECTIVE DOWNWASH CHARP-CmISTICS A-T WdK30NI.C 

SPEEDS OF A 6-FERCENT-THICK WING WITH 47O OF SWEZPBACK 

IN COAWI~KATION WITH A CYLINDRICAL BODY AS LEXERM?mD FROM 

FOIZCE MEASUREMENTS OF A HORIZOMTAL TAIL 

By  Domenic A. Coppolino 

The eTfective downwash character is t ics  of  a wing-body collr"iguratfon 
znd the body alone were determined from l i f t  measurements of a horizontsl  

The K i n g  had a sweepback angle of 47O, an  aspect  ratio of 3.5, a taper 
r a t i o  of 0.2, and a thickness   ra t io  of 0.06. The plan form  of the  hori-  
zontal  t a i l  XES geometrically similm t o  that of  the wing. The investi-  
gation w a s  mde in  the  hngley  8-foot   t ransonic   tunnel .  

t a i l  located 0.333 and 0.479 w i P 4  semispan above the body center line. 

- 

A t  low angles of a t tack  (-2O t o  5O), the  rate of change of effect ive 
downwash angle  with  angle of a t tack  w a s  approxiwtely 0.1 less for   the  
horizontal t a i l  located 0.479 w i n g  semispan above the body center   l ine 
that fo r  tine horizontal t a i l  located 0.333 wing semispen ebove the body 
center  l ine.  The r a t e  of change of effect ive downwash angle  with  angle 
of  a t tack   for   the  wing-body con-+igura=tion a t  high  angles of a t teck 
(go t o  12') WES approximately  twice tha t  et low mgles of a t tack 
( -2O t o  5') and exceeded 1.0 at subsonic Mach numbers greater  than 0.65. 

INTRODUCTION 

A knowledge of the  effect ive dowrwesh character is t ics   in   the  region 
of t he   ho r i zon te l   t a i l  is necessary i n  or6er t o  determine  the  contribu- 
t i o n  of the doTsmesh t o   t he   l ong i tud iml   s t zb i l i t y  of airplanes a t  trm- 
sor?ic speeds. Some ef fec ts  of w i n g  plan form end thickness on the  tran- 
sonic downwash cfiarecterietics  for wing end wing-fuselage  configurations 
are reparted  in  reference 1. Reference 2 reports  an  investfgation a t  
transonic  speeds of the  force and moment charecter is t ics  or' several  wings 
i n  combination with a cyl indrical  body of ogival Ease section. The body 

I 
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shape  used i n  that investigatico was selected mainly on considerations 
of simplicity  rather  than  in  an  attempt t o  approximte a specific  fuse- 
lage  design. During the   t es t s  of one of the wings and of the body alone, 
a horizontal t a i l  was  zliounted on the sting behind the body and, i n  addi- 
t i on   t o   t he  measurements of  the  forces and moments of  the wing-body con- 
figuration,  the l i f t  of  the  horizor-tal t a i l  was measured on a two- 
component strain-gage  balance. The horizontal-teil  lift neasurements 
were used i n  determining  effective downwash angles and form the  basie of 
the  present  paper. 

Presented  herein  are  effective downwash angles for the wing-body 
co&iguration and the body alone a t  Mach nunikters from 0.50 t o  approxi- 
mately 1.11. The  wing had a sweepback angle of 47' based or- the 0.25-chord 
l ine,   an  aspect  ratio of 3.5, a taper r a t i o  of 0.2, and an NACA 65~006 
thickness  distribution canbered f o r  a design lift coefficient o f  0.1. 
The hor i zon ta l   t a i l  had a plan form similar t o  tha t  of the wing but had 
an NACA 65AOO9 a i r fo i l   s ec t ion  at the  root and an NACA 65AOO5 a i r f o i l  
section a t  the t i p .  T%o positions 03 the   hor izonta l   t a i l  above the body 
center  l ine were investigated. The scope  of the downwash investigation 
was largely governed by the scope o f  the w i r !  investigation, and t h i s  
1imits;tion  resulted i n  abbreviated downwash studies. The data  aithough 
illcomplete m e  believed t o  w e r r a n t  publication  since  they add to   t he  
information  on downwash a t  transonic  speeds. 

SYMBOIS 

Nt cos(a' + i) 
lift coefTicient of horizontal   ta i l ,  

9% 

lift-curve  slope of horizontal t a i l  

span of wing 

span of horizontal ta i l  

aection chord of  wing 

section chord of horizontal t a i l  

mean eerodynamic chord of wing based on relationship, 
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h t  
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mean aerodynamic chord of horizontal t a i l  based on relation- 

height of horizoctal  t a i l  zbove body center   l ine 

norm1  force of horizontal t a i l  

free-stream Mach omber 

free-stream dymnic  pressme, &V2 

Reynolds nmber  bzsed 011 me= a e r o d w c  chord 

area of vi-ng 

are= of ho r i zon te l   t a i l  

free-streau  velocity 

spacwise  distance from plane of symnetry 

angle of et tack of body, based on center   l i ce  of  body 

engle of a t tack of s t i ng  support, measured by angle  between 
cen-ler l i n e  of st ing  support  and dtcection of undisturbed 
stream 

angle of ho r i zon td  t a i l  with  respect  to  center  lfne of sting 
support 

effect ive downwesh mgle  

free-stream  density 

Tunnel 

The t e s t s  were conducted in   t he   s lo t t ed   t e s t   s ec t ioo  or" the Langley 
8-foot  traasonic tu-nnel. The use of longi tudinz l   s lo t s   in   the  test sec- 

t h e   u s u d  choking ef fec ts  found in  the  comentional  closed-throat  type 
b t ion   >ern i t s   the   t es t ing  of a model thxough the speed of  soune uithout 

J 
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of wicd tc.mel.  Typical Kach nmber  distributiors  along the center   l ine 
of t i e   s l o t t e d  +,est   sectidn  in  the  region occupied by the  model  and taken 
Zrorn refererce 3 a re  shown i n   f i g u r e  1. A more conplete  descriptiorr  of 
t he   s lo t t ed   t e s t   s ec t i cn  of the Langley 8-foot  trarsonic  turmel may be 
found i n  reference 3. 

Models 

The nobeis employed ?or tine t e s t e  were constmcted of steel and 
were suppl'ed 3y a U. S.  A i r  Force  cor-tractor. The horizontal t a i l  had 
ac IWCR 6 5 ~ 0 0 9   a i r f c i l   s e c t i o r  at the  root  and an KACA 65~005 a i r f o i l  
section a t  t h e   t i p   p a r a l l e l   t o  Vne plane  of sy-metry, k 7 O  of sweep3ack 
of  the 0.25-clrora i ine,   en  aspect   ra t io  of 3.5, and e tacer r a t i o  of 0.2. 
me ving hed a piar,  for=  geonretrically similar to t h a t  of  t3e  horizontal 
t a 5 ,  had a thickness rz+,Fo or" 6 percent  parallel  to +,he nodel plane of 
spmietry, ar-d had the   fc l lowing   a i r fo i l   sec t ior   pexs l le l   to   the   nodel  
plane of  symmetry: 

Thickness  distri3ution - MCL" 65~006 

Mean line  ordinates - l / 3  of 3ACA 230 s e r i e s  plcs NACA 6-series 
uni?orn-load mean 1i.m (a  = 1.0) fo r  a design l i f t  coefficieoi, 
of 0.1 

The fuselage was a cylcodrical body 'kith  an  ogival nose section, and the  
r a t i o   c f  Body dizmeter t o  wing span was 0.094. A photograph o f  the  model 
5s shown as f5gure 2 and dinensio-nal d e t a i l s  are shown i n   f i v e  3. 

The horizontal t a i l  VGS t e s t e d   i n  two positions above the  center 
i i n e  of  the body. One positioc  of  the  korizolltal t a i l  vas located 
0.333 wing semisgsn above t i e  body center  lcne and the  other  posit ion 
%-as 0.479 wir~ semispan above the  body center  line,  with  the qua ter -  
chord point  of  the Kean aerodynamic chord o f  t%e  horizontal t a i l  located 
1.217 wing semispens  rearward cf  the  quarter-chord  point  of  the mean 
aerodymamic ckord of the  ving  for both positLons. The horizontal t a l l  
wes attached t o  %. two-cornpollent electrical  strain-gage  balarxe w3ich was 
housed ir- a cyl incr ica l  boon;, the  center l i ne  of which was p a r a l l e l   t o  
the  center lice of the  sting  support. The boon ves fastened  to  the stir4 
suggor+, with a 45O sveptforward  syrmetrical s t e e l   s t r u t  or' 0.0833 thick- 
ness ratio. T'ae.inciaence of the horizontal t a i l  was varied by rotat ing 
tke t a i l  and cylindrical  boom &bout an axis  which passed throwh  the  
quzster-chord p0Cn-L of the  mear, aerodynamic chord  of the  tail.  The ving- 
body configuration was attached to the   s t ing  sapport througk a six- 
compopent iKterna1  electrical  strain-gage  Salance. 

Tne a-ngie of a t tack of the body was var:ed by pivoting  the s k i n g  
support  (fig. 3) aSou-5 an sxis aFproxina5ely 66 inches  dow-stream  of the  



. 25-percent  point of the mean aerodyllemic chord of the  wing. In   o rde r   t o  
keep the mode1 position  reasonably  close  to  the  turJle1  axis when the 
model angle of a t tack was varied from 6' t o  12O, a 15O coupling w a s  
inserted  upstream  of  the  pivot  point. The angle-of-attack mechanism was 
remotely  controlled which Demitted  angle-of-ettack  charges w i t h  the  tun- 
nel  operating. A more detailed  description of the  support system is  given 
i n  reference 4. 

A genduliun-the  accelerometer,  celibrated  zgairst  angle  of  attack a' 
of the  sting  support and located  kithin  the  st ing  support  downstream of 
the  node1  permitted  the  angle of  a t tack  of the  sting  support t o  be s e t  
within i0.1' at  a l l  t e s t  Mach numbers. 

The Reynolds numbers based on the mean aerodynanic  chords of  the 
horizontal t e i l  and  wing an6 averaged for   several  runs is shorn in 'f ig- 
ure 4 as 8 flznction of test  Mach number.  The Reynolds number for   the 
horizontal t a i l  varied Trom 663,000 a t  a Mach  number of  0.50 t o  851,000 

2.0 X 10 t o  2.5 X 10 f o r  Yne ssne r a q e  of Mach nun3ers. 6 6 
. a t  8 M2ch number of 1.10. The Reynolds nwber  for  the wing varied from 

Measurements 

The lilt of the  horizontal  t a i l  yes obtained  simultaneously  with 
the six-component data f o r  the wing-body configuratfon. The aerodynamic 
chzracter is t ics  for the wing-body configuration  can  be found in refer- 
ence 2. The range of variebles  for  the  horizontal-tail   investigation 
w a s  dependent  on the test conditions  for  the wing-body configuretion and, 
as e resul t ,  a complete investigction of the  horizontal t a i l  was not 

. 

obtained. The folloving  table 

I CorTiguration T e i l  height, ht 

Wing-body 

Wing-body 

Wing-body 
Body alore 
Body alone 

Wing-body 

Wing-bo6y 

s m z r i z e s   t h e  range of  data  obtetned: 

Tail  incidence a' renge 
(deg) ( d e d  

0 -2 t o  12 
0 

4 to 12 -3, 3 
-2 t o  4 

0 -2 t o  4 
0 -2 t o  12 
0 -2 to   12  

-3 4 

M r a q e  

0.50 t o  1.01 
1.024 t o  1.112 
0.50 t o  0.965 

1.024 t o  1.112 
0.50 t o  1.112 
0.50 t o  1.112 
0.50 t o  1.112 
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Corrections and Accuracy 
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No correc%ions to  the  Tree-strem Er,c% nmber and  dyrkmic Fressure 
for   the  effects  or' model  and wake blockage  are  necessary f o r  t e s t s   i n   t he  
s lo t ted   t es t   sec t ion  of the  8-foot  transonic  tunnel  (ref. 5 ) .  There i s  a 
raage of Fich numbers a3ove a Mzch  number of 1.00, houever, where the 
data  are  affected by the  reflected compressions and expansions sfrom the 
tes t -sect ion bourdery. Based on the  resul ts  of reference 6, it is 
believed  that   for Mzch numbers up t o  approximately 1.04 the   effects  of 
these  disturbances on th measuerrents made in   the  present   imest igat ion 
m a y  '5e considered t o  be negligible. For t e s t  Mzch m b e r s  above 1.04, 
however, -the data were influeaced by the  bcuMary-reflected  disturbances, 
but  the  extent to which tne  data were affected by the  reflected dis turb-  
ances i s  not known for  these tests. A t  a Mach  number of 1.088 and above, 
the  boundmy-reflected  distmbances  struck  the  horizontel t a i l  8 s  shorn 
by. schlieren photograshs  (not  presented  herein)  taken  during  the  tests. 
The va l id i ty  of the  deta above E? Mzch  nuniber of 1.04, therefore,  should 
be considered t o  be  impaired. 

Tke reference  axes of the data presented in   the  f igures  hzve been 
chmged from body axes t o  wind m e a .  Sicce  the  horizontal t a i l  was 
instrumerriied with  only s. two-componer;t electrical   straio-gage bel- =nc e 
which measured the normal force b.At not  the  axial  force,  the  conversion 
from body axes t o  wind axes was comFcteti  by neglecting  the small contri-  
bution t o  the l i f t  conpcnent of the  axial   force.  

.I 

The accuracy of the  balznce  based on the  desiga of the  horizontal- 
t a i l  balaace  aM the repeatabi l i ty  of the dEta i s  kO.005 for  C k .  

Tlre ezfective dowmash angle was determined from the  relation: 

at =a' -C i - E 

where % is the  local  angle or" at tack of the  horizoatal  teil. When 
C h  = 0, it i s  assumed tha t  q = Oo and, therefore, 

or . 



EACA ~52515 7 

In   determhing  the  effect ive downwash angle  the  assumption was made 
that the   ra t io  of the dynamic pressure at   the   horfzontal  t z i l  t o  the 
f r ee - s t r em dymmic pressure was 1.00. Since e horizontal-tail  incidence 
of only 0' was tes ted for  the  horizontal  t a i l  ir both  posit ions  in  the 
presence of  the body alone and for  the  horizontal  te i l  located 0.473 wing 
senispan ebove the body center  l ine  in  the  presence of the wing-body con- 

figuration,  the  lift-curve  slope - was not  determined for   these con- 
d l  

f igurztions.   In  obtaining  the  effective downwash angle for  these  configu- 

retions,  it was  assumed that   the   l i f t -curve  s lope - we8  the same as 

that obtained  ?or  the  horizontal ta i l  located 0.333 wing semispen above 
t ? e  body center   l ine ir- the  presence oI" the  wing-body configuration. 
Also, since it is possible  that  a loss i n  t a i l  l tf t-curve  slope occu-rs 
at high  angles of a t tsck  the  evalwtion of the  efTective downwash a-le 
a t  high  angles of  a t tack can  be  misleadix. It ts believed, however, 
thzt   the  values of the   effect ive domwesh angle  presented f o r  the w i n g -  
body cozfiguration et high  sngles os? e t teck  may be  valid  because  the 
effective downwash aagle is  large end the   locel  t a i l  angle may be rele- 
t i ve ly  small,  but in   the  case of the body alone,  the  data a t  high  angles 
m a y  be  invalid and therefore Etre not  presented. It should be realized 

mutwl interference  effects  of  the boon, the  horizontal tai l ,  the   ver t i -  
cal strut, and the sti-ng support. 

. 

dC & 

dc Lt 
d i  

* 

- that the  effect ive downwash a x l e  presented  herein is modified by the 

FRXSEfiiATIOIT OF RESULTS AND DISCUSSION 

In order t o   f ac i l i t e t e   p re sen ta t ion  of the data, staggered  scales 
heve  been  used i n  nany of the  f igures an6 care should be  taken in   i den t i -  
fying  the  zero axis fo r  ezch  curve. 

The variztion  with  angle  of  attack a' of the  horizontal- ta i l  lift 
coeff ic ient   for   the two t a i l  p o s i t i o n s   i n   t l e  presence of' the wing-body 
and body alone  configurations i s  presented in   f i gu res  5 t o  10. Figures l.l 
to 16 show the  var ia t ion  for   the wing-body  and body alone  configurations 
of angle of a t tack a' with body engle  of  attack caused  by the   f lex i -  
b i l i t y  of the  sting-support system. The variation  with Mach  number of 

the  lift-curve  slope > (averaged  over  the  incidence  rarge) at aa 

angle of a t tack  a' of 4 i s  given i n   f i g u r e  17. The values  of  the 
ta i l   l i f t -curve   s lope  shown i n   f i g u r e  17 were used t o  determine t i e  effec- 
t i v e  downwash engles and these  resul ts   for   both  ta i l   heights   are   pre-  
sented in   f i gu res  18 and 19 for   the  wing-body  and  body alone  configura- 
tions,  respectively. 

dCL 
dio 

I - 
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The efTect of Mach  number on the   ra te  of change of  downwesh angle 
with sngle  of  at tack  for  the wing-body  and  body alone  configurations i s  
presented i n  figure 20 for  the two positions of the  horizontal tai l .  

The effective downwash derivative - for   the  body alone was essent ia l ly  a€ 
aa 

the same for  both  positions of the horizontal tail at the low angles of  
a t tack ( -2O to epproximately 5') Athroughout the Mach  number reage. The 
value  of  the downwash derivative was small and decreased  approximately 
0.15 through  the  transonic speed  range. 

A t  low body angles of a t tack (-2' t o  5') the downwesh derivetive 
for  the wing-body configaration  for  both  posftions of the   hor izonta l   t a i l  
showed a gradual  increese as the speed was increased up t o  a Mach number 

( f i g .  20). This decrease was due i n  part t o   t h e  loss of l if t-curve  slope 
of the wing-body configuat ion ea indicated  in  reference 2 and i n   p a r t  
to  the  decrease of  the downwash derivative  for the body alone as dis- 

of  0.93, followed  by a rapid  decrease  through the transonic speed  range 

cussed  previously.  Figure 20 shows t ha t   t he  downwash derivative - a, 
au 

for  the  horizontal  t a i l  located 0.479 w i n g  semispan above the body center 
l i n e  wss appr0xFmatel.y 0.1 leas  than that for   the  horizontal   ta i l   located 
0.333 w i n g  semisDan above the body center line throughout the Mach  Ilumber 
range which i s  i n  agreement w i t h  theory and indicated  experlmentaily i n  
reference 4. The resu l t s  at a Mach number of 0.50 were compared with 
theory  (ref.  7) and the agreement was good. The spsnwise l i f t  dis t r ibu-  
t.ions necessary  for  these  calculations were obtained using reference 8. 

Figure 20 also shows t h a t   i n  the high  angle-of-attack  range 
(go to 12') the wing-body downwash derivative was epproximately  twice 
tha t  f o r  the low angle-of-&tack  range. It is t o  be  noted that a t  sub- 
sonic  speeds above a Mach  number of 0.65, the  derivative - a s  was greater 

aa 
than 1.0. For the comFlete airplane, the increase  in   the  der ivat ive - as 

aa 
would indicate a destabi l iz ing  effect  which w o u l d  aggravate  the  unstable 
chtazacteristica of the wlng-body configuration a t  l i f t  coefficient near 
0.6 as reported i n  reference 2. 

An investigation was made in   t he  Langley 8-foot  transonic  tunnel of 
a h o r i z o n t a l   t a i l   i n   t h e  presence of e wing-body configuration and the 
body alone. The horizontal t a i l  was t es ted   in  two positione above the 
body center  line. The wing  had a sweepback angle of 470r an  aspect 

' r a t i o  of 3.5r a t aper   r&t io  of 0.2, and a thickness  ratio of  0.06. The 
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horizontel t a i l  had a plan form geometrically similzr to   t hg t  of the 
w i n g .  The body was cyl indrical  w i t h  rn ogival nose. The f o l l o w i q  con- 
clusions  vere noted: . 

1. The r z t e  of change of' effect ive d m w e s h  angle w i t h  angle  of 
a t tack   for   the  wing-body coafiguratior- a t  low angles of s t t ack  (-2' t o  5 O )  
was approximately 0 .1  less   for   the   hor izonta l   t a i l   loca ted  0.479 wing 
semispan above the body center  l ine  than  for  the  horizontal  t a i l  located 
0.333 wing semispan above the body center  l ine.  For the  body done,   the  
downwesh derivative was essent ia l ly   the same for   both  posi t iom of the 
horizontal t a i l  a t  the low angles of ettack. 

2. The r e t e  of ch-e of effect ive downwash angle w i t h  angle of 
a t t zck   fo r  the wing-body configuration i n  t l e  high angle-of-attack  range 
(9' t o  12')  WBS approximately  twice tha t  a t  l o w  angles  of  attack 
(-20 to 50) and exceeded 1.0 at subsonic Mach numbers greater   than 0.65. 

Langley Aeronautical  Laboratory, 
National  Advisory Committee fo r  Aeronautics, 

Langley Field, Va. 
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Figure 1.- Mach number dis t r ibu t ions  al.ong the center of t h e   t e s t   s e c t i o n .  



Figure 2.- Model as tested in the Langley 8-foot transonic Lunnel. 



~ l r r o i ]  srrtlon psrsllr\ t o  plane of -.ymLr.y 
HAL! 656 surle= 

Area. sq f t  1.143 
~ n p c e t   r a t l o  5.5 
l'apar rn tl o 0.2 
Thrckncss rat io  0.06 

- " 

Ilori"mtabtci1 del.ni ls 

Airfoil section paral lal  to 
plene of syumalry 
Root sertlon 65A009 
Tlp sneLion tW005 

Area, aq I't 0.12R 
AsproL re t lo  3.5 
Taper re t io  0.2 

. .. 
I 

18.54- 

Body " . --Sting support -" 

Figure 3 .- Model d e t a i l s .  A l l  dimensions are in inches. 
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Figure 6 .- Variation  of the angle of a‘ttack of the s t i n g  with the 
ho r i zon ta l - t a i l  1 W k  coef f ic ien t  :In presence  of the  wing-body 

configuration. h t  = 0.33*; i = 3 O .  
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Figure 7. - Variation of the ang1.e of attack of the sting with the 
horizontal-tail lift coefficient  in  presence  of the wing-body 

configuration.  ht = 0.333b; :i = - 3 O .  
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Figure 8. - Variation of the angle of attack of the sting with the 
horizontal-tail lift  coefficient in presence of the wing-body 
configuration. ht = 0.47%; b .i = 0 0 . 
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Figure 9.  - Variation of: the angle of attack of the   s t ing   wi th   the  
horizontal- ta i l .  lifL coeff ic ient   in   presence of t he  body alone. 

ht = 0.333h; 3. = Oo. 
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Figure 10.- Variation  of the angle of abtack of the  sting with the 
horizontal-tail  lift  coefficient in presence of the body alone. 
ht = O.47$; 1. = 0'. 
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Figure In.. - Variation of angle of a t tack  of  body with angle of a t tack  
of s t ing.  Wing-body configuration; h+. = 0.333z; i = 0'. b 
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Figure 12. - Variation of' angle of a t tack  of  body with angle of a t tack  
of s t ing.  Wing-body configuratlon; ht = 0.333b; i = 30. 
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Figure 13. - Variation of' ang1.e o f  attack of body with angle of a t tack  

of s t ing .  Wing-body configuration; h t  = 0.33%; b i = -3'. N 
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Figure 14.- Vnr.i.at ion of angle of a t tack  of body with angle of' a t tack  
o r  :;tin@;. Wing-body conriguration; h.t = O.h7$; i .- 0'. 
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Figure 15.- Varfation of angle of  aLtack of body with angle of attack 

of sting. Body alone; $ = 0.333;; i = Oo. 
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Figure 16. - Variabion o f  angle of  a t tack  of body with angle of attack 

of s t ing .  Body alone; hb = 0.4'7gp; b i 2 Oo. 
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Figure 18.- Variation with angle  of  at tack of  body of  the  e f f ec t ive  
downwash angle l o r  t he  wing-body configuration. 
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Figure 19.- Variation w i t n  angle of 
domwrsh mgle f o r  

Angle of attack of body, Q , deg 
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Figure 20.- Vzriztion with Mach number of the effective downwesh 
derivative f o r  the wing-body and body alone configuratiors. 
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